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In two intersecting many-particle streams, one can often find the emergence of oscillatory patterns. Here, we
investigate the interaction of pedestrians with vehicles, when they try to cross a road. A numerical study of this
coupled pedestrian-vehicle delay problem has been presented in a previous paper. Here, we focus on the
analytical treatment of the problem, which requires us to use a simplified car-following model. Our analytical
results for the transition to oscillatory pedestrian and traffic flows and the average waiting times are well
supported by numerical evaluations and give a detailed picture of the collective dynamics emerging when
pedestrians try to cross a road. The mathematical expressions allow one to identify the dependence on model
parameters such as the vehicle or pedestrian arrival rate, and the safety factor of pedestrian gap acceptance. We
also calculate a formula for the vehicle time gap distribution, which corresponds to the departure time contri-
bution of a M /D /1 queue characterized by Poissonian distributed Markovian arrivals, 1 service channel, and
deterministic departures.
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I. INTRODUCTION

Pattern formation is a widespread feature of driven many-
particle systems. In particular, oscillatory patterns are found
in fluids, granular materials, colloidal systems, and traffic
flows. A typical example is the stop-and-go waves in traffic
flows on freeways caused by a delayed adaptation to chang-
ing traffic conditions �1–5�. Emergent oscillations have been
discovered in such different systems as the density oscillator
�6�, ticking hour glass �7�, RNA polymerase traffic on DNA
�8�, pedestrians passing a bottleneck �9,10�, or ants �11�. Os-
cillatory patterns have also been found in two intersecting
pedestrians streams �12� or simulations of colloidal systems
�13�.

Although the subject is rather old �14–16�, the crossing of
vehicle streams by pedestrians has recently attracted an in-
creasing interest, also among physicists �17–21�. However,
the problem of interactions between vehicles and pedestri-
ans, when pedestrians are trying to cross a road, has not yet
been sufficiently understood. The mathematical investigation
of this problem will be the subject of this paper. Numerical
studies have shown a transition from crossing the road one
by one or in small groups to coupled oscillations of pedes-
trian and vehicle flows, if pedestrians use small gaps to cross
the road �21�. In the following, the dynamics of this phenom-
enon and the parameter dependence of the transition point
will be investigated analytically.

Our paper is organized as follows. Section II formulates
the model for the pedestrian and vehicle behavior and their
interactions. Moreover, we calculate a formula for an ideal-
ized vehicle time gap distribution. In Sec. III, we will derive
analytical results on the dynamic behavior of interacting pe-
destrian and vehicle flows. Moreover, we will compare these
results with numerical evaluations of computer simulations
of the underlying model. Our analytical formulas for the

transition point and the waiting times of pedestrians and cars
are well compatible with numerically determined data. Fi-
nally, we will summarize and discuss our results in Sec. IV,
which are relevant for many systems with intersecting flows
or competing processes.

II. FORMULATION OF THE MODEL

A. Vehicle behavior

In our simplified model of vehicle dynamics, cars are
treated as moving objects of length l0. We assume a constant
arrival flow Qarr of vehicles and that new cars try to enter the
investigated road section with a probability q=Qarrdt per
time step dt. This implies an exponential time gap distribu-
tion, which is modified by vehicle-vehicle interactions �see
Sec. II B�. In fact, a vehicle with the speed v following a
leading vehicle with speed v* is assumed to decelerate as
dv /dt=−a, if v�0 and

�x � l0 + d0 +
v2

2a
−

v*
2

2a
, �1�

where �x denotes the distance between the two vehicles, l0
the vehicle length, and d0 the preferred minimum bumper-to-
bumper distance among cars. This condition guarantees
accident-free driving �22�. For a � sign in Eq. �1�, the ve-
hicle accelerates as dv /dt=a, delayed by the reaction time T,
until the maximum �free� speed v0 is reached. For an = sign
in Eq. �1�, the velocity is not changed, i.e., dv /dt=0. The
above continuous car-following model may be called the
constant-deceleration-delayed-acceleration model and has
some similarities with the slow-to-start cellular automation
model �23�. A model similar to Eq. �1� has also been used in
the study of cooperation in a toy autobahn model �24�.
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We assume that pedestrians enter the street at the crossing
point O, when they consider it safe �see Sec. II C�. More-
over, crossing the road takes a time period �. In order to
avoid accidents with pedestrians, vehicles decelerate as
dv /dt=−a if necessary. We consider two different decelera-
tion rules.

(a) Careful drivers. The closest car to a pedestrian on the
street decelerates, if the distance d�t�=−x�t� to the crossing
point O is within the range

0 � d�t� � d0 +
v2

2a
�2�

where d0 is the safety distance that a car should keep from a
crossing pedestrian. We assumed this safety distance to be
identical to the minimum bumper-to-bumper distance among
vehicles appearing in �1�.

(b) Aggressive drivers. The closest car starts to decelerate
at the time t0 determined so that the distance to the pedes-
trian corresponds to the safety distance d�tn+��=d0 at the
time tn+� when the last �the nth� pedestrian on the street
�entering at time tn� leaves the road after the crossing time �.

After the last pedestrian has left the street, i.e., at time
tn+�, the car accelerates as dv /dt=a, until it has reached its
desired velocity v0 again. The characteristic distance be-
tween stopped vehicles in a queue is the vehicle length l0
plus the minimum bumper-to-bumper distance d0, which de-
fines the jam density

�jam ª

1

l0 + d0
. �3�

In the following, we will assume that a car starts to acceler-
ate after its leader is delayed by the reaction time T. This
implies that the following car has reached the position of the
leading car in the queue after a time period T
+�2�d0+ l0� /a and that the distance to the leading car is l0

+d0+Tv0, when the following car has reached its maximum
velocity v0. Therefore, the outflow from a traffic jam starts
with a value of �T+�2�d0+ l0� /a�−1 and eventually reaches
the characteristic �maximum� value

Qout ª �T +
l0 + d0

v0
�−1

, �4�

while the traffic jam �queue� resolves upstream with the
characteristic speed

c ª
l0 + d0

T
=

1

�jamT
�5�

due to the distance l0+d0 between queued cars and the delay
T in acceleration. Moreover, when a vehicle is stopped at
point x�t�=−d0, the forming traffic jam behind it propagates
upstream with the velocity �25�

C ª ��jam

Qarr
−

1

v0
�−1

, �6�

which depends on the vehicle arrival rate Qarr.
The proposed simple car-following model essentially re-

flects the features of the section-based, fluid-dynamic traffic-

flow model proposed in Ref. �25�, with the only difference
that the acceleration and braking processes require time pe-
riods of T+v0 /a and T /v0, respectively. Apart from scaling
time and space variables in order to get rid of two more
model parameters, it is hard to think of any further simplifi-
cation of the above vehicle model without sacrificing funda-
mental properties of traffic flows such as the constant out-
flow from traffic jams and the characteristic jam resolution
speed �26�. Nevertheless, it may be interesting to study the
limit a→� of unlimited acceleration possibilities, which
eliminates acceleration and deceleration times. More realistic
variants of the above car-following model, however, should
distinguish different acceleration and deceleration strengths
a and b, which have been set equal here for the sake of
simplicity. A stochastic variant of this model describing a
fluctuating acceleration behavior would also be interesting to
study.

B. Idealized vehicle distance distribution

In our vehicle simulations, we have generated vehicles
with initial velocity v=0 at the upstream boundary of the
simulation stretch according to the exponential time gap dis-
tribution Qarre

−QarrT�, where T� denotes the actual time gap.
However, according to our car-following model, vehicles had
gained at least their preferred distance D= l0+d0+v0T, when
they reached the maximum speed v0. According to theoreti-
cal considerations, this changed the effective time-gap distri-
bution at the crossing point to

P�T�� = QarrT0	�T� − T0�

+ �1 − QarrT0�Qarre
−Qarr�T�−T0�
�T� − T0� �7�

with T0=D /v0 �see the Appendix�, when no vehicles at the
entry point were dropped. That is, a fraction QarrT0 of ve-
hicles will follow with the desired time gap T0, while the rest
has an exponentially distributed, larger time gap T��T0.
	�y� denotes Dirac’s delta function, while the Heaviside
function 
�y� is 1 for y�0 and 0 otherwise.

Our exponentially distributed vehicle generation mecha-
nism sometimes causes a virtual queue of vehicles at the
upstream boundary, which can be avoided by generating ve-
hicles according to the resulting time gap distribution �7�. In
fact, our implementation of the boundary conditions corre-
sponds to a M /D /1 queuing system �27,28�, i.e., to a queue
with Poissonian distributed Markovian arrivals �where the
time gaps between successive arrivals are exponentially dis-
tributed�, while the service rate 1 /T0 is assumed to be deter-
ministic. �The “1” stands for one “channel,” i.e., no parallel
service.�

Now, let P0 be the probability that no vehicle is waiting in
the queue to be served, i.e., to enter the road. The probability
of releasing the next vehicle with a time gap T�=T0 is then
given by the probability �1− P0� of having queued vehicles
waiting to enter, plus the probability P0�1−e−QarrT0� that we
have the no-queue case and a vehicle arrives during the ser-
vice time T0. In cases with no queue where the time gap T�
of the next arriving vehicle is greater than T0, we have an
exponential time gap distribution Qarre

−QarrT� /e−QarrT0, where
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e−QarrT0 is the normalization factor of the conditional prob-
ability of finding time gaps larger than T0. Altogether, we
obtain the time gap distribution

P�T�� = ��1 − P0� + P0�1 − e−QarrT0��	�T� − T0�

+ P0Qarre
−QarrT�
�T� − T0� . �8�

Demanding

1

Qarr
= �

0

�

dT�T�P�T�� = T0 +
P0

Qarr
e−QarrT0, �9�

i.e., that the vehicle flow Qarr and, therefore, the average time
gap remains unchanged, we find

P0 = �1 − QarrT0�eQarrT0. �10�

This implies the idealized vehicle time-gap distribution �7�,
which will be necessary to evaluate the expected waiting
time of pedestrians for a suitable time gap to cross the road
�see the Appendix�.

C. Pedestrian behavior

We will assume that pedestrians enter the sidewalk of the
street at the crossing point O with probability p=� dt per
time step dt, i.e., � denotes the arrival rate of pedestrians. If
there is no sufficient gap in the vehicle stream to cross, they
accumulate around point O, but they start immediately to
enter the road at time t, if v�t�=0 �i.e., if the vehicle velocity
is zero� or if

d�t� � d0 and �t�t� ª
d�t�
v�t�

� 
� �11�

�i.e., if the distance d�t� is larger than the preferred safety
distance d0 and the time gap �t is large enough to cross the
road�. Here, �t is the time to collision of the nearest ap-
proaching vehicle and 
 a safety factor applied by pedestri-
ans. � is the time period required for a pedestrian to cross
�one lane of� the road. We may distinguish two limiting cases
of gap selection, i.e., interactions with approaching vehicles.

(1) Careful pedestrians assume that cars may not deceler-
ate and approach with their desired velocity v0. They cross
the road only if the car at no time comes closer than the
preferred safety distance d0, which implies the following
choice of the safety factor:


 = 
1 ª 1 +
d0

v0�
. �12�

(2) Daring pedestrians enter the road if a car with veloc-
ity v0 would not come closer than the preferred safety dis-
tance d0, if it decelerated as dv /dt=−a in order to avoid an
accident. This implies the reduced safety factor


 = 
2 ª 1 +
d0

v0�
−

a�

2v0
= 
1 −

a�

2v0
. �13�

In this case, a single pedestrian can force a car to stop,
namely, when entering at a vehicle distance d�t�=d0

+v0
2 / �2a�.

Realistic values of the safety factor 
 are expected to be
above 
2.

For the following analysis, we will identify the time point
t=0 with the time when the first pedestrian�s� who cause�s� a
vehicle to decelerate enter�s� the road. The entering time of
the next entering pedestrian is denoted by t1, the entering
time of the kth following pedestrian by tk, and the entering
time of the last �nth� following pedestrian before the car
passes point O by tn.

D. Simulated dynamic behavior of interacting vehicle and
pedestrian flows

Simulations of vehicles interacting with pedestrians
crossing a street have recently shown an interesting phenom-
enon. While for large enough values of the safety factor 
,
pedestrians cross the road one by one or in small groups, one
finds alternating pedestrian and vehicle streams if the safety
factor is smaller than some critical value 
0. This value can
be exactly calculated for the above model �see Eq. �33��,
which shows qualitatively the same dynamic behavior as
the variant of the intelligent driver model �IDM� model
studied in a previous publication �21�. Representative simu-
lation results for the above proposed pedestrian and vehicle
model are displayed in Fig. 1. The parameter values used in
this paper are a=1 m/s2 ,�=2 s ,T=0.9 s , l0=4 m, d0=2 m,
and v0=15 m/s, and our numerical investigation focuses on
careful drivers.

The reason for the observed oscillations is that pedestrians
can force vehicles to stop, if they choose small time gaps �t.
However, if vehicles are stopped, they have to wait until
there is a gap of period � or larger in the pedestrian stream,
before they can accelerate again. During this waiting time, a
vehicle queue is formed, which can become very long, de-
pendent on the vehicle arrival rate. Pedestrians cannot cross
the road again, before this queue is completely dissolved, at
least if


� �
d0 + Tv0

v0
= T +

d0

v0
, �14�

i.e., if the time gap between successive vehicles having left
the queue is too short for pedestrians to enter the street, and
if


� �
l0 + 2d0 − �a/2���2�l0 + d0�/a − T�2

a��2�l0 + d0�/a − T�
, �15�

i.e., if the time gap with respect to the second car in the
queue at the time �2�l0+d0� /a�T �when the back of the first
vehicle has passed the crossing point O� is not large enough
for pedestrians to enter the street.

In summary, we may have alternating time periods in
which pedestrians can cross the road and time periods in
which cars can pass point O. In the following sections, based
on statistical approaches, we will try to estimate the time
period until a sufficiently large gap in the vehicle flow occurs
to allow pedestrians a crossing of the road. Likewise, we will
calculate the time period until queued vehicles find a large
enough gap between crossing pedestrians, allowing them to
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accelerate again. Analytical results can be only gained for
simple models as the one proposed above. Nevertheless, we
expect qualitatively similar relationships for a broad class of
other traffic models.

III. ANALYTICAL RESULTS AND COMPARISON WITH
COMPUTER SIMULATIONS

A. Dynamics of vehicles reacting to pedestrians

Let t0 be the time point when the car starts to decelerate in
response to a crossing pedestrian. According to Secs. II A
and II C, we find that the time to collision evolves in time
according to

�t�t� =
d�t�
v�t�

=
d�0� − v0t

v0
=

d�0�
v0

− t if t � t0. �16�

For careful drivers, i.e., case �a�, the start time of decelera-
tion can be determined as

t0 =
d�0� − d0

v0
−

v0

2a
. �17�

This yields the time to collision

�t�t� =
d0 + v0

2/�2a� − v0�t − t0� + a�t − t0�2/2

v0 − a�t − t0�

=
v0

2a
−

t − t0

2
+

d0

v0 − a�t − t0�
if t � t0 �18�

�see Fig. 2� and the vehicle velocity

v�t0 + �� = v0 − a�� − t0� =
v0

2
− a� + a

d�0� − d0

v0
�19�

after the pedestrian has crossed the road. If the vehicle ve-
locity at the beginning of the braking maneuver is v�t0�
�v0, one just has to replace v0 by v�t0�. For aggressive
drivers, i.e., case �b�, we find

t0 = � −�2v0�

a
− 2

d�0� − d0

a
, �20�

�t�t� =
d�t0� − v0�t − t0� + a�t − t0�2/2

v0 − a�t − t0�

=
v0

2a
−

t − t0

2
+

d�t0� − v0
2/�2a�

v0 − a�t − t0�
if t � t0, �21�

and

v�t0 + �� = v0 − a�� − t0�

= v0 − �2av0� − 2a�d�0� − d0� . �22�

That is, the greater the initial distance, the later will the ve-
hicle start to decelerate and the larger will the resulting ve-
locity be. Note that, according to the gap acceptance rules of
pedestrians outlined in Sec. II C, the shortest distance to a
moving vehicle at which pedestrians enter the road, is given
by 
�v.

B. Average delay to vehicles

Let us denote by vmin the minimum velocity before the car
accelerates again. If only one pedestrian obstructs the car, we
have vmin=v���, as calculated above. The time delay to the
car compared to a movement with the free velocity v0 can be
calculated as the distance 2�v0−vmin�2 / �2a� traveled less, di-
vided by the desired velocity v0, which results in

FIG. 1. �a� Representative space-over-time plot of vehicle tra-
jectories for careful drivers and the pedestrian safety factor 

=1.05. Pedestrians may stop cars, which causes vehicle queues.
These suppress the crossing of newly arriving pedestrians until the
vehicle queue has completely dissolved. �b� Representative space-
over-time plot of vehicle trajectories for the larger safety factor 

=1.25, for which pedestrians use large gaps only. As a consequence,
pedestrians do not stop cars completely when they cross the street,
and no vehicle queues are formed.
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�tbr =
�v0 − vmin�2

av0
. �23�

If the vehicle is stopped, the time lost by the acceleration and
deceleration process amounts to v0 /a. On top of this, we
have to add the average waiting time tw. This can be obtained
as follows: If �t1 denotes the waiting time of the first
stopped vehicle, the number of vehicles queuing up behind it
until the first car in the queue starts to accelerate is given by
�jamC�t1. The delay of the last vehicle in the queue is the
queue length l=C�t1, divided by the queue resolution speed
c. As the waiting time between the first and the last vehicle in
the queue progresses approximately linearly, their cumula-
tive waiting time is given by

�jamC�t1

2
��t1 +

C�t1

c
� =

�jamC��t1�2

2
�1 +

C

c
� . �24�

Moreover, up to the time point when the queue formed
within the stopping time �t1 has resolved, another
�jamlC / �c−C� vehicles have joined the queue �cf. formula
�1.48� in Ref. �25��. While the waiting time of the first of
these additional vehicles is approximately l /c=C�t1 /c �as
the one of the last vehicle in the first part of the queue�, the
waiting time of the last vehicle is basically zero, which im-
plies a cumulative waiting time of

�jamC�t1

2
� C

c − C

C�t1

c
+ 0� =

�jamC��t1�2

2

C2

c2 − cC
.

�25�

Adding this to Eq. �24� gives the cumulative waiting time

tc =
�jam

2
��t1�2 cC

c − C
, �26�

which grows quadratically in �t1 �see Fig. 3�.
Finally, dividing this result by the total number C�t1�1

+C / �c−C�� of vehicles yields a very simple relationship for

the average waiting time, which is just given as the average
waiting time of the first and the last queued vehicles:

tw =
�t1

2
. �27�

However, the estimation of the waiting time �t1 of the first
stopped vehicle is rather difficult �see Sec. III E�.

C. Determination of the transition point to alternating flows

The long vehicle and pedestrian queues required for
pronounced oscillations in the pedestrian and vehicle flows
can only occur if vehicles can be completely stopped by
pedestrians. This cannot happen, if the safety factor 
 of
pedestrians is large enough. For small values of 
, however,
there exists a time point t−, after which the safety criterion
�11� prohibits a further entering of pedestrians into the road.
This time point is given by the earlier time satisfying the
critical safety condition �t�t��=
�. Together with the ex-
pressions for the times to collision in Sec. III A, this eventu-
ally implies

t� − t0 =
v0

a
− 
� ���
��2 −

2d0

a
�28�

for careful drivers. t+ is the first time point at which pedes-
trians may reenter the road again, as the time to collision
�t�t� increases close to the crossing point �see formula �18��.
The car reaches its minimum possible velocity a time period
� after t−, i.e., after the latest entering pedestrian has left the
road at time t−+�. With Eq. �28� this implies

v�t− + �� = a��
 − 1� + ��a
��2 − 2ad0 �29�

for careful drivers. For aggressive drivers, we have to replace
d0 by d�t0�−v0

2 / �2a�. To exclude stopped vehicles,
on the one hand, this minimum velocity should be positive,
i.e.,

FIG. 2. Time-dependent time to collision �t�t�=d�t� /v�t� for
careful drivers �see Eq. �18��, when pedestrians would enter the
road with probability p=1 and 
=1.05 �symbols, numerically de-
termined values; solid line, analytical formulas�. Due to the braking
maneuver, the time to collision goes down in the beginning, but it
grows again later on, as the vehicle comes to rest at the finite
distance d�t�=d0 to the pedestrian.

FIG. 3. Average of the cumulative waiting times tc of vehicles
as a function of the time period �t1 the first vehicle in the queue has
to wait, for different values of the vehicle arrival rate Qarr �see Eq.
�6�� �symbols, numerically determined values; parabolic curves,
analytical formula�.
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�
 −
1

2
�a�2 � d0. �30�

On the other hand, vehicles could also be stopped by new
pedestrians entering the road at a time t� t+ that lies before

the time t−+� at which the last pedestrian has left the road.
Therefore, in order to avoid the stopping of vehicles by mul-
tiple crossing pedestrians, we have to demand

t+ − t− = 2��
��2 −
2d0

a
� � , �31�

which results in


 ��2d0

a�2 +
1

4
. �32�

Together with condition �30� we find that a careful driver
cannot be stopped completely under the condition


 � 
0 = max� d0

a�2 +
1

2
,�2d0

a�2 +
1

4
� . �33�

At the value 
=
0, we expect a transition from continuous
pedestrian and vehicle flows to alternating flows �see
Fig. 4�.

D. Calculation of earlier acceleration

Due to the statistical arrival of pedestrians with a rate
�= p /dt, it is likely that the time point tn� t− of the last �nth�
pedestrian entering the road is smaller than the latest possible
entering time t−. We are, therefore, interested in calculating
the mean value 	t−− tn
= t−− 	tn
 of the time gap t−− tn,
where n is an arbitrary integer number. For this, let K
= t− /dt be the number of time steps between the first entering
pedestrian and t−. As the probability that no pedestrian
enters in a time step is given by r= �1− p� , �1− p�K is
the probability that nobody enters between t=0 and t= t−,
and p�1− p�K−k the probability that the last pedestrian
enters at time t−− �K−k�dt=kdt. The expected value of t−

− tn is

	t− − tn

dt

= K�1 − p�N + p�
k=1

K

�K − k��1 − p�K−k

= KrK + �1 − r�r
d

dr�k=1

K

rK−k

=
r�1 − rK�

1 − r
= �1 − p�

1 − �1 − p�K

p
�34�

�see Fig. 5�. Therefore, if a vehicle is not stopped, instead of
at time t−+�, on average it already starts to accelerate at the
earlier time

	tn
 + � = t− + � − �1 − p�dt
1 − �1 − p�K

p
� t− + � −

1 − e−�t−

�
,

�35�

where the last step of this calculation is based on Eq. �37�
below. With this result, we can now estimate the expected
value 	vmin
 of the minimum vehicle velocity vmin entering
Eq. �23�:

FIG. 4. Transition point 
0 to alternating vehicle and pedestrian
flows as a function of the dimensionless parameters �a� x1

=d0 / �v0�� obtained for d0� �1.6 m,2.5 m�, �b� x2=v0 / �a�� ob-
tained for a� �0.5 m/s2 ,1.2 m/s2�, and �c� x3=d0 / �a�2� obtained
for a� �0.5 m/s2 ,1.2 m/s2� in comparison with the lower limit 
2

of reasonable safety factors �see Eq. �13�� �symbols, numerically
determined values; solid lines, analytical formula�. Note that the
value of 
0 is constant for x3=x1x2=d0 / �a�2�=const.
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	vmin
 − v�t− + �� = a�t− − 	tn
� = a�1 − e−�t−�/� . �36�

The higher velocity compared to v�t−+�� given by Eq. �29�
originates from the earlier car acceleration, i.e., the shorter
deceleration time.

E. Estimation of the waiting time of the first vehicle

If a vehicle is stopped by crossing pedestrians after a de-
celeration time v0 /a, it will have to wait until a time gap of

duration � in the pedestrian flow occurs. A gap of length �
=N dt or greater occurs with probability

�37�

i.e., gap sizes are exponentially distributed, as expected.
Here, we have assumed ln�1− p��−p, but the required small
values of p=� dt can be reached by sufficiently small choice
of the time steps dt. In fact, in the following considerations,
we will study the limit dt→0. Therefore, we have used the
value dt=0.001 s in our computer simulations.

Now, let ki denote the size of the ith gap Ti= ti− ti−1 �i.e.,
the number of time steps dt with no pedestrian arrival�. Then,
the expected value for the time period until a time gap of
length �=N dt or greater starts is given by

�
n=0

�

�
k1=0

N

¯ �
kn=0

N

�k1 + 1 + ¯ + kn + 1��1 − p�k1p ¯ �1 − p�knp�1 − p�N

� �
n=0

�

�n�
0

�

dT1 ¯ �
0

�

dTn�T1 + ¯ + Tn�e−��T1+¯+Tn�e−�� = − e−���
n=0

�

�n d

d�


i=1

n ��
0

�

dTie
−�Ti�

= − e−���
n=0

�

�n d

d�
� 1

�n�1 − e−���n� = − e−���
n=0

�

n�1 − e−���n� �e−��

1 − e−�� −
1

�
� = � 1

�
−

�e−��

1 − e−���e−��s
d

ds�n=0

�

sn with s = 1 − e−��

=
1

�
�e�� − �1 + ���� �

��2

2
+ ¯ . �38�

That means the average waiting time for a gap of size � or
larger starts to grow linearly with the pedestrian arrival rate
�= p /dt and quadratically with � as long as these values are
small, but it grows exponentially with ��, when this value is
large.

Note, however, that the waiting time is reduced by the gap
between the time M dtªv0 /a when the vehicle is stopped
and the time tn� t− at which the last pedestrian has entered
the street before. Analogously to Sec. III D, we can calculate
the expected value of this time gap as

	v0/a − tn
 = �1 − p�
1 − �1 − p�M

p/dt
=

1 − e−�v0/a

�
, �39�

since we have �1− p�→1 in the limit dt→0. As a conse-
quence, the expected value 	�t1
 of the time period �t1 the
first vehicle in the queue has to wait can be estimated as

	�t1
 =
1

�
�e�� − �1 + ���� −

1 − e−�v0/a

�

=
1

�
�e�� + e−�v0/a − 2 − ��� �40�

�see Fig. 6�.

F. Average delay to pedestrians

After a time interval �t1, i.e., a time period � after the last
pedestrian has entered the road, the first vehicle in the queue
can accelerate again. The time period available to pedestrians
for crossing the road is �t1+v0 /a, as the time period v0 /a
required to stop the vehicle is usable as well. When the ve-
hicle has started to move again, no pedestrian will be able to
cross the road until the last vehicle of the queue has passed
point O �at least if 
��T�. This time period can be calcu-
lated as ��25�

�t2 = C �t1
1 + c/v0

c − C
. �41�

The expected value of �t2 is

	�t2
 = C	�t1

1 + c/v0

c − C
+�2d0

a
�42�

�see Fig. 7�, where we have also taken into account the ad-
ditional amount �2d0 /a required by a vehicle to get from x
=−d0 to point O.
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After the last vehicle in the queue has passed, pedestrians
have a chance to find a suitable gap of size 
� or larger. A
lower bound of the expected waiting time 	�t3
 for the oc-
currence of such a gap is calculated in the Appendix. In Fig.
8, we compare the resulting expression

	T�� 
 =
1

Qarr
� eQarr�T*−T0�

1 − QarrT0
− �1 + QarrT*�� �43�

corresponding to Eq. �A7� with numerical results, where T0
=1/Qout=T+ �l0+d0� /v0 and T*=
�+ �l0+d0� /v0. This for-
mula gives the expected waiting time 	�t3
 provided that the
pedestrian arrives exactly at the time when a vehicle passes
the crossing point and there are no vehicle time gaps smaller
than T0. Otherwise, it is an approximation, which neglects
�1� the effect that pedestrians tend to arrive at the sidewalk
between two vehicles �so that there is an incomplete interve-
hicle time gap, which must be added�, and �2� the fact that
the gaps of vehicles approaching the last, already accelerat-
ing vehicles in a queue may be smaller than T0. These two

effects increase the waiting time, i.e., 	�T�� 
� 	�t3
.
During the waiting time ��t2+�t3� of pedestrians, the ex-

pected number of arriving pedestrians is ���t2+�t3�. Ac-
cording to our model, all of these pedestrians will use the
next occuring gap of size 
� or larger to cross the street. We
can assume that the waiting time of the last crossing pedes-
trian is approximately zero, while it is approximately ��t2

+�t3� for the first one �when the pedestrian arrival rate is
high enough�. Therefore, the average delay can be approxi-
mated as ��t2+�t3� /2, and the cumulative delay of all wait-
ing pedestrians amounts to

���t2 + �t3�2

2
. �44�

FIG. 5. Average time span t−− 	tn
 between the latest possible
entering of the street by a pedestrian and the time point when the
last pedestrian actually enters the street as a function of the scaled
pedestrian arrival rate �� �see Eq. �36�� �symbols, numerically de-
termined values; solid line, analytical formula�.

FIG. 6. Average waiting time 	�t1
 of the first vehicle in the
queue as a function of the scaled pedestrian arrival rate �� �sym-
bols, numerically determined values; solid line, analytical formula�.

FIG. 7. Average time 	�t2
 needed to dissolve a vehicle queue
as a function of the average time 	�t1
 for which the first vehicle
has been waiting, for various values of the vehicle arrival rate Qarr

�see formula �6�� �symbols, numerically determined values; straight
lines, analytical results�.

FIG. 8. Average waiting time 	�t3
 until a pedestrian enters the
road after a vehicle queue has completely dissolved, as a function of
the scaled vehicle arrival rate Qarr� for 
=1.05. Our numerical
simulation assumes the special case that a pedestrian arrives just at
time t= t0 when a vehicle of the queue passes the crossing point and
vehicle time gaps are not smaller than T0. The average time delay to
this pedestrian is represented by triangles and compared to the ana-
lytical results of formula �43� �solid line�.
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IV. SUMMARY AND DISCUSSION

In this paper, we have proposed the continuous-in-space
constant-deceleration-delayed-acceleration car-following
model, in order to allow for the analytical calculation of the
interactions between vehicles and crossing pedestrians under
conditions of statistically distributed arrival times. Although
the model is not made to reproduce all currently known
properties of traffic flows, it does reflect some essential fea-
tures such as accident-free driving, a constant outflow from
traffic jams and a characteristic queue resolution speed.

We have distinguished two interaction modes between pe-
destrians and vehicles. �i� When pedestrians prefer large
safety factors 
�
0, vehicles are not stopped, and pedestri-
ans cross between moving vehicles either one by one or in
small groups. �ii� When pedestrians keep small safety factors

�
0, they may stop vehicles, which usually causes vehicle
queues. Once a large enough gap between successive pedes-
trian arrivals occurs, cars will move again and prevent the
crossing of pedestrians, until the last vehicle in the queue has
passed the crossing point. This oscillatory dynamics with
alternating flows of cars and pedestrians tends to be ineffi-
cient and related with long waiting times �21�. Empirical
observations confirm the existence of such oscillatory pat-
terns. Therefore, we are presently preparing for an empirical
study of this phenomenon by means of a special laser-
detector device.

In this contribution, we have calculated the threshold 
0
between the oscillating and nonoscillating regimes. It turned
out to be a function of d0 / �a�2� only, i.e., independent of the
pedestrian or vehicle arrival rates �, and Qarr, the vehicle
length l0, the free vehicle velocity v0, or the preferred time
gap T, while the car deceleration a, the desired minimum
distance d0, and the crossing time � matter. We have also
calculated the expected waiting times of pedestrians and ve-
hicles as a function of the arrival rates. The difficult step in
gaining these results was the calculation of the first overcriti-
cal time gap and its expected value. This also required the
determination of the vehicle gap distribution for determinis-
tic, i.e., nonfluctuating vehicle interactions, while variations
in the arrival times were taken into account �see Eq. �7��. The
formulas for the waiting time distributions can serve to judge
under which conditions pedestrian and vehicle streams
should be controlled �terminated� by traffic lights and when a
self-organized crossing of streets is more efficient. Beyond
this, our approach is generally expected to be useful for a
better understanding of intersecting flows and certain con-
flicting processes. For example, a similar gap acceptance
problem is found in lane-changing maneuvers, so that our
formulas may help to calculate analytical formulas for lane-
changing rates.

Regarding the choice of the behavior and parameters of
cars drivers �careful or aggressive� and pedestrians �careful
or daring�, one may assume an evolutionary perspective: Due
to a learning process during many vehicle-pedestrian inter-
actions, an optimal behavior should emerge on the long run.
It is, however, not yet clear whether there exists a state which
is optimal for both, drivers and pedestrians. If not, one may
consider the pedestrian-vehicle interactions as an example
for a social dilemma �29�, and the outcome may depend on

details of the interactions. For example, if pedestrians would
tend to use safety factors 
�
0, car drivers may react to this
by an aggressive approaching behavior. This would make it
difficult for pedestrians to stop vehicles. However, cars could
still be successfully stopped if pedestrians learned to enter a
road exactly with a time gap of 
2�. In conclusion, there are
always strategies to produce or avoid alternating pedestrian
and vehicle flows, but the outcome depends always on the
parameters of both, pedestrian and driver behavior. The de-
termination of the optimal behavioral parameters and the
evaluation of interactive parameter adaptations of pedestri-
ans and vehicles will be left for a future study.
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APPENDIX: CALCULATION OF THE EXPECTED
WAITING TIME FOR A SUITABLE GAP

Let P�T�� be the distribution density function of vehicle
time gaps T�. Moreover, let

Q = Prob�T� � T*� = �
0

T*

dT�P�T�� �A1�

be the probability of finding a time gap T��T* and

T� ª 	T�
T��T*
=

1

Q
�

0

T*

dT�T�P�T�� �A2�

the expected value of time gaps that are smaller than T*.
Then, given that a car has just passed, the expected time until
the first gap T� greater than T* occurs is given by the expres-
sion

	T�� 
 = �
n=0

�

nT�Qn�1 − Q� , �A3�

as an arbitrary number n of smaller gaps may occur with
probability Q each, before a large enough gap occurs with
probability �1−Q�. Here, we have used that the expected
lengths T� of short gaps T��T* just add up due to the as-
sumption of independently and identically distributed time
gaps T�. One can calculate
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	T�� 
 = �1 − Q�T��
n=0

�

nQn

= �1 − Q�T�Q
d

dQ
� 1

1 − Q
� =

QT�

1 − Q
=

�
0

T*

dT�T�P�T��

�
0

�

dT�P�T��
.

�A4�

Inserting the vehicle time gap distribution �7� eventually
gives

1 − Q = P�T� � T*� = �1 − QarrT0�e−Qarr�T*−T0� �A5�

and

QT� =
1

Qarr
�1 − �1 − QarrT0��1 + QarrT*�e−Qarr�T*−T0�� .

�A6�

This implies

	T�� 
 =
1

Qarr
� eQarr�T*−T0�

1 − QarrT0
− �1 + QarrT*�� . �A7�

The required minimum time gap for the crossing of a pedes-
trian between two successive vehicles is T*=
�+ �l0+d0� /v,
while the preferred time gap between successive vehicles is
T0=T+ �l0+d0� /v. Note that formula �38� for the expected
waiting time of vehicles for a large enough gap in the pedes-
trian stream corresponds to the special case T0=0 with �
=Qarr and T*=�.

�1� D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep.
329, 199 �2000�.

�2� D. Helbing, Rev. Mod. Phys. 73, 1067 �2001�.
�3� T. Nagatani, Rep. Prog. Phys. 65, 1331 �2002�.
�4� Pedestrian and Evacuation Dynamics, edited by M. Schreck-

enberg and S. D. Sharma �Springer, Berlin, 2002�.
�5� B. S. Kerner, The Physics of Traffic �Springer, Berlin, 2004�.
�6� O. Steinbock, A. Lange, and I. Rehberg, Phys. Rev. Lett. 81,

798 �1998�.
�7� X.-l. Wu, K. J. Måloy, A. Hansen, M. Ammi, and D. Bideau,

Phys. Rev. Lett. 71, 1363 �1993�;C. T. Veje and P. Dimon,
Phys. Rev. E 56, 4376 �1997�.

�8� K. Sneppen et al., J. Mol. Biol.�to be published�; see http://
www.nordita.dk/research/complex/models/DNA/rnap.html

�9� D. Helbing and P. Molnár, Phys. Rev. E 51, 4282 �1995�; C.
Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz,
Physica A 295, 507 �2001�.

�10� D. Helbing, I. Farkas, and T. Vicsek, Nature �London� 407,
487 �2000�.

�11� A. Dussutour, J.-L. Deneubourg, and V. Fourcassié, J. Exp.
Biol. 208, 2903 �2005�.

�12� D. Helbing, L. Buzna, A. Johansson, and T. Werner, Transp.
Sci. 39, 1 �2005�.

�13� J. Dzubiella and H. Löwen, J. Phys.: Condens. Matter 14,
9383 �2002�.

�14� W. F. Adams, J. Inst. Civ. Eng. 4, 121 �1936�.

�15� J. C. Taner, Biometrika 38, 383 �1951�.
�16� R. J. Cowan, Transp. Res. 9, 371 �1975�.
�17� J. D. Griffiths and J. G. Hunt, Traffic Eng. Control 32, 458

�1991�.
�18� D. P. Sullivan and R. J. Troutbeck, Traffic Eng. Control 35,

445 �1994�.
�19� X. P. Guo, M. C. Dunne, and J. A. Black, Transp. Sci. 38, 86

�2004�.
�20� R. Jiang, Q. Wu, and X. Li, Phys. Rev. E 65, 036120 �2002�.
�21� R. Jiang, D. Helbing, P. K. Shukla, and Q.-S. Wu, e-print cond-

mat/0501595.
�22� S. Krauß, Ph.D. thesis, Deutsches Zentrum für Luft- und

Raumfahrt e.V., Cologne, Report No. 98-08, 1998 �unpub-
lished�.

�23� R. Barlovic, L. Santen, A. Schadschneider, and M. Schrecken-
berg, Eur. Phys. J. B 5, 793 �1998�.

�24� S. Migowski, T. Wanschura, and P. Rujan, Z. Phys. B: Con-
dens. Matter 95, 407 �1994�.

�25� D. Helbing, S. Lämmer, and J.-P. Lebacque, in Optimal Con-
trol and Dynamic Games, edited by C. Deissenberg and R. F.
Hartl �Springer, Dordrecht, 2005�, p. 239.

�26� B. S. Kerner and H. Rehborn, Phys. Rev. E 53, R4275 �1996�.
�27� O. Brun and J.-M. Garcia, J. Appl. Probab. 37, 1092 �2000�.
�28� J. Shortle, M. Fischer, and P. Brill, INFORMS J. Comput. �to

be published�.
�29� N. S. Glance and B. A. Huberman, J. Math. Sociol. 17, 281

�1993�.

HELBING, JIANG, AND TREIBER PHYSICAL REVIEW E 72, 046130 �2005�

046130-10


